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Executive Summary 
 
Section 408(p)(1) of the Federal, Food, Drug and Cosmetic Act (FFDCA) requires EPA to 
“develop a screening program, using appropriate validated test systems and other scientifically 
relevant information, to determine whether certain substances may have an effect in humans 
that is similar to an effect produced by a naturally occurring estrogen, or such other endocrine 
effects as [EPA] may designate.” Pursuant to that authority, in 1998, EPA introduced the 
Endocrine Disrupter Screening Program (EDSP) including the use of a two-tiered in vitro and in 
vivo screening framework (63 FR 42852 and 63 FR 71542). EPA validated a battery of five (5) 
in vitro and six (6) in vivo assays (EDSP Tier 1 battery) for screening chemicals in 2008 (74 FR 
54415). The purpose of Tier 1 screening is to identify chemicals that have potential biological 
activity (“bioactivity”) in the estrogen, androgen or thyroid hormone pathways using a battery of 
assays. Tier 1 screening data is subjected to a weight-of-evidence (WoE) analysis where an 
assessment is made on the need for Tier 2 testing. The purpose of Tier 2 testing is to identify 
and establish a dose-response relationship for any adverse endocrine (estrogen, androgen, or 
thyroid) effects. 
 
The chemical substances covered by the EDSP include approximately 1,200 pesticide active 
ingredients, 2,500 pesticide inert ingredients, and 6,000 drinking water contaminants, with 
some overlap between these lists. Because of the cost (EPA estimated industry costs in 
conducting a full Tier 1 battery to be approximately $1 million per chemical, largely due to the 
in vivo laboratory animal testing, 78 FR 35903) and time (up to six years) involved in 
conducting and reviewing the full battery of Tier 1 assays, EPA has been able to evaluate only 
a fraction of the thousands of chemicals that fall within the scope of the EDSP.  
 
For more than a decade at EPA, research efforts have focused on the development and 
evaluation of high-throughput (HT) in vitro assays and in silico methods as new approach 
methodologies (NAMs), including databases and computational models, for use as alternatives 
to the current suite of assays in the EDSP Tier 1 battery to accelerate the pace of screening, 
add efficiencies, decrease costs, and reduce animal testing. NAMs refer to any technology, 
methodology, approach, or combination of these that can provide information on chemical 
hazard and risk assessment while limiting/optimizing the use of animal testing (U.S. EPA, 
2018b). This effort has been supported by the Office of Research and Development (ORD) 
and the Office of Chemical Safety and Pollution Prevention (OCSPP) (Thomas et al., 2019; 
U.S. EPA, 2019; NRC, 2007) along with collaboration with the National Institute of 
Environmental Health Sciences (NIEHS). Test method validation is a process based on 
scientifically sound principles by which the reliability and relevance of a particular test, 
approach, method, or process are established for a specific purpose (OECD, 2005). A 
validated test approach can be used as an alternative for a Tier 1 assay. Other scientifically 
relevant information (OSRI) may also be considered in determining whether the information 
needs provided by a Tier 1 assay are satisfied but may not always fulfill those data needs. This 
White Paper announces that certain NAMs have been validated by EPA and may now be 
accepted by EPA as alternatives for certain EDSP Tier 1 assays, while other NAMs are useful 
for prioritization under the EDSP and for consideration as OSRI (U.S. EPA, 2009e) in WoE 
evaluations. EPA will consider the strengths, limitations, and uncertainties of the NAMs in 
combination with the existing assays in the EDSP tiered-framework and other potential OSRI 
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(U.S. EPA, 2009e), (e.g., exposure data, physical-chemical properties, toxicologically relevant 
studies in the published literature, QSAR models and other data submitted to support chemical 
assessment), as part of the WoE approach (U.S. EPA, 2011b) to determine whether EDSP 
Tier 2 testing is necessary. This White Paper provides further details below concerning when 
and how the NAMs outlined may be used.  

The following terms are defined below for use in this document and are consistent with EDSP 
materials, including the December 1998 Federal Register Notice (63 FR 71542).  

• Priority setting is defined as the collection, evaluation, and analysis of relevant 
information, including results of HT screening, to determine the general order in which 
chemical substances or mixtures will be subjected to screening and testing. 

• Screening is defined as the application of short-term assays to determine whether a 
chemical substance or mixture has the potential to interact with the endocrine system. 
As these are preliminary assays, a positive result does not mean that a chemical 
substance may have an effect in humans, fish or wildlife that is similar to the effect 
produced by naturally occurring hormones. Screening, identified as a “Tier 1” process, 
is mandatory for all pesticides (active ingredients and inerts) under FFDCA Section 
408(p)(3) and discretionary for other chemicals that are regulated under SDWA, 
although exemptions for pesticides can be granted under FFDCA Section 408(p)(4).  

• Testing is defined as a customized combination of assays and endpoints designed to 
determine whether a chemical substance or mixture may cause adverse effects in 
humans, fish, or wildlife similar to the effects produced by naturally occurring hormones 
(estrogens, androgens, and thyroid hormones). Tests are designed to confirm and 
further define the results obtained in Tier 1 screens by identifying and establishing a 
dose-response relationship for any adverse effects that might result from the potential 
endocrine (estrogen, androgen, or thyroid) bioactivity identified through the Tier 1 
assays (Table 1), accepted alternatives to the Tier 1 assays, or OSRI. Where Tier 1 
results, accepted alternatives, or OSRI indicate a potential for affecting estrogen, 
androgen and thyroid (EAT) activity, Tier 2 testing is necessary to determine that a 
substance may have an effect similar to that of a naturally occurring hormone. 

• Weight of evidence (WoE) is the process by which the strengths and weaknesses of a 
collection of information is judged to render an overall conclusion that may not be 
evident from consideration of the individual data (76 FR 60022). More specifically, WoE 
is conducted as part of the evaluation of EDSP Tier 1 screening data to identify the 
need for Tier 2 testing (U.S. EPA, 2011b). In conducting WoE, EPA may consider and  
use relevant information besides Tier 1 data (e.g., EDSP NAMs data, exposure data, 
physical-chemical properties, toxicologically relevant studies in the published literature, 
QSAR models and other data submitted to support chemical assessment) to determine 
whether any Tier 2 tests are needed. 

As with any cutting-edge science, there has been a vibrant scientific discussion that reflects a 
diversity of viewpoints, including within EPA, of which NAMs could be considered validated 
and which should only be used as OSRI during WoE evaluations. EPA welcomes comments 
on the approach suggested in this document.   
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Moving forward, EPA will refine the list below as appropriate, using public comments received 
on this White Paper, and will continue work to validate additional NAMs as alternatives to Tier 
1 screens. 

NAMs Validated for Screening. EPA has determined that the following NAMs may be used 
as alternatives for the following four (4) EDSP Tier 1 screening assays when evaluated on a 
chemical-by-chemical basis. For some chemicals, these NAMs cannot yet serve as an 
alternative for some or all of the four screening assays (for example, pesticides that have 
limited solubility or high volatility have been shown to be difficult to test). EPA will evaluate the 
properties of each chemical and the strengths and limitations of each NAM to determine 
whether the NAM may serve as an alternative appropriate for screening a specific chemical.  
Specifically, the potential use of the Estrogen Receptor (ER) pathway model will be evaluated 
separately for each of the three screening assays. As part of the chemical data evaluation 
processes, EPA reviews the quality of data available across multiple lines of evidence. For the 
NAMs methods listed here, EPA will specifically consider the quality of the individual ToxCast 
assay data and the level of confidence in and biological relevance of the predictions.  

 
(1) The Estrogen Receptor (ER) pathway model based on the full 18-assay 
ToxCast/Tox21 battery (Browne et al., 2015; Judson et al., 2015) (referred to in this 
document as the full ER pathway model) may be used as an alternative to performing 
all three (3) current EDSP Tier 1 screening assays:  
 ER binding in vitro assay (OCSPP 890.1250; (U.S. EPA, 2009b)) 
 ER transcriptional activation in vitro assay (ERTA; OCSPP 890.1300; (U.S. EPA, 

2009c)) 
 In vivo Uterotrophic assay (rat) (OCSPP 890.1600; (U.S. EPA, 2009d)) 

 

(2) The Androgen Receptor (AR) pathway model based on the full 11-assay 
ToxCast/Tox21 battery (Kleinstreuer et al., 2017) (referred to in this document as the full 
AR pathway model) may be used as an alternative for one current EDSP Tier 1 
screening assay: 
 AR binding in vitro assay (OCSPP 890.1150; (U.S. EPA, 2009a)).  

As explained in more detail in this White Paper, EPA considers these two NAMs validated for 
screening. Both models were reviewed by the Federal Insecticide, Fungicide, and Rodenticide 
Act (FIFRA) Scientific Advisory Panel (SAP) and may now be considered as validated 
alternatives to the four EDSP Tier 1 assays. Thus, for example, data derived from these 
validated models and assays may be used in the registration and registration review processes 
and may be determined to satisfy the specified EDSP data needs, depending on the properties 
of a pesticide.      

NAMs Acceptable for Priority Setting and WoE Analysis. Priority setting is important for 
EPA to test the chemicals posing the greatest risk first, as best as can be determined through 
the use of available (or easily generated) exposure and hazard data.  

As EPA prioritizes which chemicals go through Tier 1 screening first, EPA will use all 
information available including information from data submitted to support chemical 
assessment and peer-reviewed sources relating to chemical exposure and potential endocrine 
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bioactivity. NAMs used for prioritization do not need to be validated methods. EPA will use 
NAMs and other tools (listed below), in addition to those described as alternatives for EDSP 
Tier 1 screening assays, for priority setting of chemicals and for consideration as OSRI, where 
appropriate, in WoE evaluations. These tools are especially useful for prioritizing thousands of 
chemicals for which other sources of bioactivity and exposure information do not exist. 

While work continues, the following four NAMs are not yet accepted by the EPA as validated 
alternatives for Tier 1 screening assays. Recognizing the potential for uncertainties and 
limitations, these models and assays may be used for priority setting of large sets of chemicals 
for EDSP Tier 1 screening or for consideration as OSRI (in combination with additional 
information) in WoE evaluations:  

 
(1) ER and AR pathway models using assay subsets (also referred to as ‘reduced or 
minimal assay data sets;’ see citations below)  

(a) ER agonist assay subset pathway models (Judson et al., 2017).  
(b) AR agonist and antagonist assay subset pathway models (Judson et al., 
2020).  

 
(2) In Silico Qualitative Structure Activity Relationship Consensus Models for ER and 
AR (Mansouri et al., 2020; Mansouri et al., 2016). Available in the OPERA tool.  
 
(3) Integration of Bioactivity and Exposure (Integrated Bioactivity Exposure Ratio, IBER), 
which compares an estimated external dose threshold for a biological effect, based 
on an internal dose (i.e., plasma concentration) derived from bioactivity data (e.g., ER 
and AR pathway model outputs), with estimates of exposure. (Friedman et al., 2020; 
Thomas et al., 2019; Bell et al., 2018; Wambaugh et al., 2018; Sipes et al., 2017; 
Wetmore, 2015; U.S. EPA, 2014c; Wetmore et al., 2012; Rotroff et al., 2010).  
 
(4) The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool 
for interspecies extrapolation (Lalone et al., 2018; Ankley et al., 2016). The tool provides 
information that can be used to understand how broadly screening data (e.g., from ER 
pathway model assays) or adverse outcome pathways (AOPs) may plausibly be 
extrapolated across species and taxa. For example, SeqAPASS could be used to 
extrapolate mammalian ER in vitro bioactivity data to predict potential susceptibility of 
non-mammalian species (Ankley et al., 2016).  

 
  
Progress Updates and Future Directions 
EPA is also providing a status update regarding various NAM tools under development 
including HT approaches to assess disruption of steroidogenesis and thyroid pathways and 
additional development of SeqAPASS for the androgen receptor and thyroid-related targets. 
EPA is making no conclusions about their potential utility as prioritization or screening tools 
under the EDSP tiered framework at the current time. However, EPA might consider their use 
in conjunction with other data in a WoE framework. This paper does not address alternatives to 
the current Tier 2 tests, and there are no plans to offer alternatives for Tier 2 tests within the 
next few years. 
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A summary of the conclusions of this document is as follows: 
• The full estrogen receptor (ER) and androgen receptor (AR) pathway models have been 

validated, and the results from those models may be used as alternatives at this time for 
some Tier 1 assays (ER binding, estrogen receptor transcriptional activation (ERTA), 
and Uterotrophic [ER pathway model] and AR binding [AR pathway model]). For any 
particular chemical, the suitability of a model will be decided on a case-by-case basis 
considering the limitations of the models (see Section III.E.) and the properties of the 
chemical.  

• All the New Approach Methods (NAMs)/tools discussed in this paper (including full ER 
and AR pathway models, reduced ER and AR pathway models, Integration of Bioactivity 
and Exposure (IBER), Collaborative Estrogen Receptor Activity Prediction Project 
(CERAPP), and Collaborative Modeling Project for Androgen Receptor Activity 
(CoMPARA)) may be used directly to prioritize chemicals for screening or to inform 
prioritization or hazard assessment (Sequence Alignment to Predict Across Species 
Susceptibility (SeqAPASS)). 

• In some cases (considering the limitations of the model, additional available information, 
and EPA’s guidance on Other Scientifically Relevant Information (OSRI)), the following 
NAMs may be considered OSRI and used during Weight of Evidence (WoE) evaluation 
to make decisions: reduced ER and AR pathway models, CERAPP, CoMPARA, 
SeqAPASS, and IBER. 

• During WoE evaluation, which precedes Tier 2 testing, results from the Tier 1 battery, 
appropriate NAM alternatives, and OSRI are considered to determine which, if any, Tier 
2 tests should be conducted. Thus, this WoE occurs between Tier 1 screening and any 
Tier 2 testing. 

• None of these NAMs is meant to be alternatives for the current Tier 2 tests. 
• The Agency will consider all public comments received on this document as it begins to 

implement these new approaches.  
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I. Introduction 
 
A. Historical Framework for EDSP 
 
In 1996, Congress amended the FFDCA (section 408(p)) which requires EPA to develop a 
program ‘‘to determine whether certain substances may have an effect in humans that is 
similar to an effect produced by a naturally occurring estrogen, or such other endocrine effects 
as [EPA] may designate’’ (FFDCA section 408(p) (21 U.S.C. 346a(p))). When carrying out the 
program, EPA ‘‘shall provide for the testing of all pesticide chemicals’’ and ‘‘may provide for the 
testing of any other substance that may have an effect that is cumulative to an effect of a 
pesticide chemical if the Administrator determines that a substantial population may be 
exposed to such a substance’’ (21 U.S.C. 346a(p)(3)). In addition, Congress amended the 
Safe Drinking Water Act (SDWA) and gave EPA authority to provide for the testing of 
endocrine disrupting effects ‘‘of any other substance that may be found in sources of drinking 
water if the Administrator determines that a substantial population may be exposed to such 
substance’’ (SDWA Amendments of 1996, section 136 (42 U.S.C. 300j–17)). 
 
In 1996, EPA convened the Endocrine Disruptor Screening and Testing Advisory Committee 
(EDSTAC), which was chartered under the Federal Advisory Committee Act (5 U.S.C. App.2, 
9(c)), to make recommendations on how to develop the screening program mandated by 
Congress. The EDSTAC was comprised of members representing the commercial chemical 
and pesticide industries, Federal and State agencies, worker protection and labor 
organizations, environmental and public health groups, and academic research scientists.  
 
EPA largely adopted the EDSTAC recommendations and proposed the basic components of 
the EDSP in a Federal Register notice issued August 11, 1998 (63 FR 42852) (FRL-6021-3). 
After public comments, external consultations and scientific peer review, EPA provided 
additional details in a second Federal Register notice on December 28, 1998 (63 FR 71542) 
(FRL-6052-9). The design of the EDSP was based on the recommendations of the EDSTAC 
(U.S. EPA, 1998):  

• Address both potential human and ecological effects from chemical exposures 
• Focus examination of effects of these chemicals on estrogen, androgen, and thyroid 

hormone-related processes  
• Include pesticide and non-pesticide chemicals, contaminants, and mixtures (after 

evaluating single chemicals) 
• Develop a two-tiered screening and testing strategy 

The following terms are defined below for use in this document and are consistent with EDSP 
materials, including the December 1998 Federal Register Notice (63 FR 71542).  

• Priority setting is defined as the collection, evaluation, and analysis of relevant 
information, including results of HT screening, to determine the general order in which 
chemical substances or mixtures will be subjected to screening and testing. 

• Screening is defined as the application of short-term assays to determine whether a 
chemical substance or mixture has the potential to interact with the endocrine system. 
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As these are preliminary assays, a positive result does not mean that a chemical 
substance may have an effect in humans, fish or wildlife that is similar to the effect 
produced by naturally occurring hormones. Screening, identified as a “Tier 1” process, 
is mandatory for all pesticides (active ingredients and inerts) under FFDCA Section 
408(p)(3) and discretionary for other chemicals that are regulated under SDWA, 
although exemptions for pesticides can be granted under FFDCA Section 408(p)(4).  

• Testing is defined as a customized combination of assays and endpoints designed to 
determine whether a chemical substance or mixture may cause adverse effects in 
humans, fish, or wildlife similar to the effects produced by naturally occurring hormones 
(estrogens, androgens, and thyroid hormones). Tests are designed to confirm and 
further define the results obtained in Tier 1 screens by identifying and establishing a 
dose-response relationship for any adverse effects that might result from the potential 
endocrine (estrogen, androgen, or thyroid) bioactivity identified through the Tier 1 
assays (Table 1), accepted alternatives to the Tier 1 assays, or OSRI. Where Tier 1 
results, accepted alternatives, or OSRI indicate a potential for EAT activity, Tier 2 
testing is necessary to make a determination that a substance may have an effect 
similar to that of a naturally occurring hormone. 

• Weight of evidence (WoE) is the process by which the strengths and weaknesses of a 
collection of information is judged to render an overall conclusion that may not be 
evident from consideration of the individual data (76 FR 60022). More specifically, WoE 
is conducted as part of the evaluation of EDSP Tier 1 screening data to identify the 
need for Tier 2 testing (U.S. EPA, 2011b). EPA may also conduct WoE using relevant 
information (e.g., EDSP NAMs data, exposure data, physical-chemical properties, 
toxicologically relevant studies in the published literature, QSAR models and other data 
submitted to support chemical assessment) to determine whether any Tier 2 tests are 
needed. 

For the EDSP, bioactivity (determined as part of Tier 1 screening) indicates that a chemical 
has the potential to alter endocrine function. However, confirming whether the chemical alters 
endocrine function and whether that altered function produces an adverse outcome cannot be 
determined without further testing (e.g., Tier 2 or other testing). It is important not to equate a 
determination of a chemical's bioactivity with a determination that a chemical causes endocrine 
disruption. The World Health International Programme on Chemical Safety (IPCS) defines an 
endocrine disruptor as “an exogenous substance or mixture that alters function(s) of the 
endocrine system and consequently causes adverse [emphasis added] health effects in an 
intact organism, or its progeny, or (sub) populations” (WHO, 2002).  

At this time, the full estrogen receptor (ER) and androgen receptor (AR) pathway models have 
been validated and thus the results from those models may be used as alternatives for specific 
Tier 1 screens. EPA will consider the strengths, limitations, and uncertainties of the NAMs in 
combination with the existing, validated assays in the EDSP tiered-framework and other 
potential OSRI (U.S. EPA, 2009e), (e.g., exposure data, physical-chemical properties, 
toxicologically relevant studies in the published literature, QSAR models and other data 
submitted to support chemical assessment), as part of the WoE approach (U.S. EPA, 2011b) 
to determine whether additional data are needed.  
 







  

Page 14 of 55 

 
 

For HPV pesticide inert ingredients, EPA focused on: 
1. Human biological samples (human biological monitoring pathway) 
2. Animal tissues that have human food uses (ecological biological pathway, e.g., fish 

tissues) 
3. Drinking water (drinking water pathway) 
4. Indoor air (indoor air pathway) 

 
Based on these exposure considerations and public review, EPA began issuing Tier 1 test 
orders for a list of 67 pesticide chemicals (58 active ingredients and 9 HPV inert ingredients) 
for List 1 in 2009. Registrations for 15 of the 67 chemicals were subsequently canceled or 
discontinued by the pesticide registrant and are no longer in use. The registrants’ responses to 
the test orders for the remaining 52 pesticides, including conducting Tier 1 assays and EPA 
review of the Tier 1 data (including OSRI), and drafting the EDSP Tier 1 WoE evaluations for 
List 1 chemicals, took approximately 6 years. In 2015, EPA completed WoE screening 
determinations for the 52 supported List 1 chemicals (50 pesticidal active ingredient and 2 inert 
ingredients). The Tier 1 WoE screening results for these 52 List 1 chemicals are 
determinations of their potential to impact endocrine function and should not be construed as 
meaning that EPA concluded any chemical was an endocrine disruptor. Of the 52 chemicals 
evaluated, there was no evidence for potential interaction with any of the endocrine 
pathways for 20 chemicals, and for 14 chemicals that showed potential interaction with one 
or more pathways, EPA already has enough information to conclude that they did not need 
Tier 2 EDSP testing. Based on the WoE results, EPA identified 18 (of 52) List 1 chemicals as 
potentially needing EDSP Tier 2 testing (U.S. EPA, 2021b) or other OSRI.  
 
In November 2012, EPA published the document, “Endocrine Disruptor Screening Program 
Universe of Chemicals and General Validation Principles,” which identifies approximately 
10,000 substances for EDSP priority setting and screening (U.S. EPA, 2012), based on the 
authorities of the FFDCA and SDWA. In June 2013, EPA published a second list (List 2) of 109 
chemicals prioritized for Tier 1 screening under the EDSP, which included pesticide active and 
inert ingredients, and contaminants that may be found in drinking water (78 FR 35922). In 
developing the List 2 chemicals for EDSP screening, EPA focused on continuing to address 
pesticides and beginning to address drinking water contaminants. Pesticides on List 2 
represented those scheduled for Registration Review during fiscal years 2007 and 2008. EPA 
identified drinking water contaminants for List 2 from chemicals that were regulated under the 
national primary drinking water regulation (NPDWR) (40 CFR part 141) under the SDWA or 
were unregulated contaminants on the third Contaminant Candidate List (CCL 3). Based on 
these considerations, the final List 2 for EDSP Tier 1 screening, consisting of 107 chemicals 
(41 pesticide active ingredients and 86 SDWA chemicals, some of which are overlapping) was 
published, although test orders have not been issued for these chemicals (78 FR 35922).  
 
Of the approximately 10,000 EDSP substances, including pesticide active ingredients and 
inerts (covered under FIFRA) and chemicals found in sources of drinking water (covered under 
SDWA), only 67 (List 1) and 107 (List 2) chemicals have been prioritized for screening and 
potential testing to date. Based on the current pace of the Tier 1 screening assays, it could 
take decades to screen all 10,000 chemicals in the EDSP domain. Therefore, EPA’s EDSP is 
actively pursuing the application of computational toxicology and exposure estimation methods 
using NAMs to create a more efficient and robust screening program. Incorporating innovative 
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computational toxicological tools allows EPA to integrate bioactivity and exposure to prioritize 
and screen chemicals and is consistent with the approach originally recommended by 
EDSTAC in 1998 (EDSTAC, 1998). Advances in computational toxicology have brought EPA 
to an “evolutionary turning point” or “pivot” for EDSP priority setting, screening, and testing 
(U.S. EPA, 2015b). In addition to rapidly screening thousands of chemicals and overcoming 
throughput limitations of traditional chemical toxicity testing, computational toxicology methods 
are helping EPA to offer NAMs as alternatives for some EDSP Tier 1 assays.  
 
 
II. Approach for Advancing the EDSP  
 
From 1996 to 2012, EPA invested significant resources in developing and validating Tier 1 
screening and Tier 2 testing guidelines for use in the EDSP. Concurrently, the need for a more 
comprehensive review of new, state-of-the-science technologies for toxicity testing was also 
recognized. EPA requested the National Research Council develop a strategy for 
implementation of toxicity testing. Following the 2007 publication of Toxicity Testing in the 21st 
Century: A Vision and Strategy (NRC, 2007), EPA increased its focus on development and 
evaluation of newer technologies to accelerate the pace of screening and testing and reduce 
reliance on more resource intensive animal-based toxicity testing. In 2007, for example, ORD 
launched the Toxicity Forecaster (ToxCast) program to prioritize and screen chemicals (Dix et 
al., 2007). ToxCast is a broadly based HT screening program that generates data on a variety 
of chemicals and their impact on important biological processes; a subset of methods and data 
from this effort is directly relevant to the EDSP. ToxCast (as of the August 2020 release of 
invitroDB version 3.3) has ER and AR pathway model results for over 1,800 chemicals from a 
broad range of sources including pesticides, industrial and consumer products, food additives, 
pharmaceuticals, and other chemicals of interest for the development of predictive toxicology 
methods (Richard et al., 2016). ToxCast provides a means of quickly and efficiently prioritizing 
and/or screening large numbers of chemicals for endocrine bioactivity, and can minimize the 
number of required, time-consuming laboratory animal-based toxicity tests.  
 
EPA is also a leader in the Toxicology in the 21st Century (Tox21) federal agency collaboration 
whose purpose is to develop and evaluate NAMs as alternatives to animal-intensive toxicity 
studies (Thomas et al., 2018). Tox21 pools resources and expertise from EPA, the National 
Toxicology Program (NTP), National Center for Advancing Translational Sciences (NCATS), 
and the Food and Drug Administration (FDA) to apply HT screening to thousands of chemicals 
for potential bioactivity. Together EPA ToxCast and multi-Agency Tox21 programs have 
developed and evaluated NAMs and determined how chemicals are evaluated for effects on 
both human health and the environment. Current chemical domain includes ~2000 chemicals 
studied in >800 assays representing over 400 biological targets and pathways, and an even 
larger set of >8000 chemicals have been tested in a subset of these assays (for access to 
data, see EPA CompTox Chemicals Dashboard and Tox21 Toolbox. These data can also be 
found at NTP’s Integrated Chemical Environment which has a curated version of the HTS data 
that includes chemical QC information and mapping of assays to mechanistic targets. The 
CompTox Chemicals Dashboard (Williams et al., 2017), and InvitroDB are living databases 
and models that are regularly updated with new information from EPA research and external 
stakeholders.  
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In fiscal year 2012, EPA began a multi-year transition to evaluate, validate, and incorporate 
computational toxicology methods and HT screens to serve as alternatives for current Tier 1 
screening assays (U.S. EPA, 2012). EPA efforts to develop and evaluate EDSP NAMs have 
been jointly coordinated by ORD and OCSPP. In September 2011, EPA published the 
Endocrine Disruptors Screening Program for the 21st Century Workplan (U.S. EPA, 2012) 
(“EDSP21 Work Plan”). The Workplan advances continued efforts for the EDSP to reflect the 
current state of the science for evaluating potential effects on endocrine-mediated processes. 
Based on the EDSP21 Workplan, EPA began a multi-year transition to validate and more 
efficiently use computational toxicology methods and HT in vitro assays (primarily from EPA’s 
ToxCast program). The EDSP21 Work Plan proposes to use a multi-level and integrated 
approach to determine whether a chemical has the potential to interact with specific endocrine 
signaling pathways. The near-term goal relied on computational methods to prioritize 
chemicals for screening. The intermediate-term goal involved replacing current validated in 
vitro screening (Tier 1) assays with validated in vitro HT assays. The results of this effort would 
also inform efforts to replace current in vivo Tier 1 assays. The long-term goal was to replace 
all current Tier 1 screening assays by incorporating advances in computational modeling and 
molecular biology and using robotics for conducting rapid, low-cost, non-animal assays on 
hundreds to thousands of chemicals. Progress on this effort was provided in the 2014 EDSP 
Comprehensive Management Plan. 
 
In a Federal Register notice (U.S. EPA, 2015a), EPA announced its intention to “pivot” towards 
the use of validated HT assays and in silico models that can serve as alternatives for some of 
the current assays in the EDSP Tier 1 battery and requested public comment (U.S. EPA, 
2015b). EPA requested comment on its intention to use HT assay and computational tools in 
the EDSP as well as on the use of 18 ER HT in vitro assays and ER pathway model as 
validated alternatives to three of the 11 Tier 1 screening assays: ER binding in vitro assay 
using rat uterine cytosol (OCSPP 890.1250), ER transcriptional activation (ERTA) in vitro 
assay (Human Cell Line HeLa-9903) (OCSPP 890.1300; OECD No. 455), and Uterotrophic in 
vivo assay in rat (OCSPP 890.1600; OECD No. 440). EPA received comments from 12 
groups/individuals generally supportive of EPA’s transition to the use of HT assays and 
computational models as alternatives to assays in the EDSP Tier 1 battery (U.S. EPA, 2015b, 
see comments in https://www.regulations.gov/docket/EPA-HQ-OPPT-2015-0305). EPA 
prepared a response to comments document that has been added to the public docket for the 
2015 Federal Register Notice (U.S. EPA, 2022b, see https://www.regulations.gov/docket/EPA-
HQ-OPPT-2015-0305).  
 
Subsequent to this 2015 Federal Register notice, EPA has worked on the further development 
and evaluation of alternatives to the existing EDSP Tier 1 screening battery. Much of this work 
is the subject of this document. Although the science will continue to evolve and additional 
NAMs will be available in the future, EPA has determined that some NAMs addressed in this 
White Paper may now be considered as alternatives in satisfying specified Tier 1 assays (see 
Table 2 below). Table 2 also highlights potential future efforts for NAM development of Tier 1 
and Tier 2 alternatives.  Additional NAMs may also be used for priority setting in the EDSP and 
may be considered as OSRI in a WoE approach as appropriate (U.S. EPA, 2011b, 2009e). 
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B. Performance-Based Approach to Establishing Confidence in NAMs 
 
Historically, test methods have been validated according to principles described in the 
Organisation for Economic Co-operation and Development (OECD) Guidance Document on 
the Validation and International Acceptance of New or Updated Test Methods for Hazard 
Assessment (GD 34) (OECD, 2005). Specifically, OECD GD 34 states that “new test methods 
undergo validation to assure that they employ sound science and meet regulatory needs” (i.e., 
the methods are fit-for-purpose), “the validation process should be flexible and adaptable,” and 
that performance must be “demonstrated using a series of reference chemicals” and 
“evaluated in relation to existing relevant toxicity data.” OECD GD 34 further defines relevance 
of a test method to include, “the relationship between the test and the effect in the target 
species and whether the test method is meaningful and useful for a defined purpose, with the 
limitations identified.” Reliability is defined in OECD GD 34 as the extent of reproducibility of 
results from a test within and among laboratories over time, when performed using the same 
standardized protocol.  
 
OECD guidance states that the validation process should be “flexible and adaptable.” The 
steps used in the performance-based validation of ER and AR pathway models meets many 
elements in OECD GD34 of scientifically supported data quality evaluation approaches 
including those for NAMs and toxicological test data. There have been several attempts by 
multiple national/international organizations (including OECD) to streamline the validation 
process and allow for more rapid adoption of reliable and relevant NAMs considering the 
context in which NAMs are expected to be used. Also, the validation of a NAM has historically 
included the generation of data in “ring-trials” involving multiple laboratories using a range of 
chemicals and controls in an expensive, multi-year process. The ability of multiple labs to use 
the same assay protocol and get similar results is an indication of the transferability of the 
method. The transferability of a method has historically been seen as a prerequisite for 
validation, despite the reality that some NAMs require specialized equipment, expertise, or 
intellectual property considerations. Newer, performance-based, validation approaches 
supplant the need for inter-laboratory ring trials with more flexible, fit-for-purpose approaches, 
including demonstration of reproducibility over time and assessments that consider expanded 
reference chemical sets.  
 
To more flexibly accommodate the range of decision contexts and rapid pace of NAM 
development, multiple entities and individuals have proposed frameworks for building 
confidence and accelerating the use of NAMs (ICCVAM, 2018; Casati et al., 2017; Patlewicz et 
al., 2015; Patlewicz et al., 2013). EPA developed a set of criteria for evaluating the scientific 
reliability and relevance of NAMs within TSCA and presented these criteria in the TSCA 
Strategic Plan (U.S. EPA, 2018a). While many of the criteria in the TSCA Strategic Plan are 
fundamental to evaluating the reliability and relevance of NAMs, a generic framework that 
applies across EPA’s myriad of statutes and regulations has not yet been developed. As 
described in EPA’s NAMs Work Plan (U.S. EPA, 2021a), a scientific confidence framework for 
use across regulatory contexts broader than TSCA needs to be developed to evaluate the 
quality, reliability, and relevance of NAMs. Assessment criteria to facilitate regulatory use and 
international adoption were recommended by the International Cooperation on Alternative Test 
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Methods (ICATM) and described in Casati et al. (2017). In addition, the 2021 OECD guideline 
497 includes “ANNEX 1: Evaluation Framework to the OECD Supporting Document on 
Defined Approaches for Skin Sensitisation” which provides criteria for establishing scientific 
confidence in NAMs, specifically defined approaches.  The Interagency Coordinating 
Committee on the Validation of Alternative Methods (ICCVAM) has recently created a new 
technical workgroup to evaluate existing validation and confidence building frameworks and to 
develop updated guidance and recommendations. OCSPP and ORD are actively engaged in 
the NAMs Work Plan and ICCVAM activities. The outcomes of these efforts will help further the 
development and implementation of NAMs for EDSP.  
  
EPA used a performance-based approach to validate the ER and AR pathway models (see 
description in Section III of this paper) for potential ER and AR bioactivity. In this approach, the 
performance of the ER (or AR) pathway model is compared against the results for previously 
validated tests for the same endpoint (e.g., ER binding, ER transactivation, AR binding). The 
robustness of the model is characterized using large sets of in vitro and in vivo reference 
chemicals with well-defined activities in the existing methods. A performance-based approach 
relies on analytical specifications such as required sensitivity, specificity, and reproducibility. 
As a result, this approach offers a flexible, fit-for-purpose evaluation process to building 
confidence in the acceptability of the ER and AR pathway models, which supports EPA’s 
decision to validate those models.  
 
Sensitivity, specificity, and balanced accuracy are examples of performance metrics that are 
important to performance-based validation. Sensitivity measures the proportion of positives 
that are correctly identified as such, while specificity measures the proportion of negatives that 
are correctly identified as such. Mathematically, sensitivity = the number of true positives ÷ 
(number of true positives + number of false negatives). Specificity = number of true negatives 
÷ (number of true negatives + number of false positives). Balanced accuracy is the proportion 
of correct outcomes of a test method, or mathematically, it is the arithmetic mean of sensitivity 
and specificity. Reproducibility indicates that re-running the assay (or some models) will give 
you a similar answer.  
 
As part of its risk assessment activities, EPA routinely evaluates significant amounts of data, 
including new methods and approaches, for use in hazard and exposure assessments and the 
readiness of new methods and models. The strengths and uncertainties of the ER and AR full 
pathway models are described in Section III, C and D. Further, additional analyses to address 
some of the test limitations are described in Section VIII. Future Direction.  
  
In the 2015 Federal Register Notice (USEPA, 2015b), EPA had announced the plan to use the 
ER pathway model as an alternative to three (3) of the current EDSP Tier 1 battery of assays 
(ER binding assay, ERTA, and Uterotrophic assay). This FRN states:  
 

“The approach incorporates validated high throughput assays and a computational 
model and, based on current research, can serve as an alternative for some of the 
current assays in the Endocrine Disruptor Screening Program (EDSP) Tier 1 battery.” 

 
The 2015 FRN further describes the following steps taken to use a performance-based 
approach to validate the ER pathway model and to use as OSRI: 
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• The ‘‘ER Model’’ bioactivity scores were validated by comparing the scores to 45 
reference chemicals, equivalent to a performance-based approach to validation. 

• EPA also compared the ‘‘ER Model’’ results to a database of curated uterotrophic 
studies published in peer-reviewed literature. ER agonist bioactivity scores accurately 
predicted in vivo ER agonist activity for a large set (∼150) of chemicals with uterotrophic 
data.  

• The validation of the ‘‘ER Model’’ as an alternative screening method for three current 
Tier 1 assays (ER binding, ER transcriptional activation (ERTA), and uterotrophic) was 
peer reviewed by the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) 
Scientific Advisory Panel (SAP) in December 2014.  

• The FIFRA SAP fully endorsed the use of these alternatives for the ER binding and 
ERTA assays; however, there was not consensus among panel members on the use of 
the ‘‘ER Model’’ as an alternative for the uterotrophic assay. 

 
In this White Paper, EPA announces its intent to use the results from the full ER pathway 
model as a fully validated alternative to the respective EDSP Tier 1 assays (ER binding, ERTA, 
and uterotrophic). When appropriate, the model, which integrates results from a battery of high 
throughput assays, can replace some or all of these low throughput assays (depending on the 
properties of the chemical at issue e.g., solubility or volatility). Thus, even though the model 
has been fully validated, EPA will decide on a chemical-by-chemical basis whether the model 
can replace these assays. For example, these models can produce a false negative if used on 
an extremely volatile chemical, so EPA would not accept the data from the model for such 
substances.     
 
With respect to the AR pathway model, the steps taken by EPA to validate the AR pathway 
model are consistent with those described in the 2015 FRN for the ER pathway model and 
include the following:  
 

• The ‘‘AR pathway model’’ bioactivity scores were validated by comparing with a set of 
reference chemicals. To be included in this set, a chemical had to have consistent 
(active or inactive, agonist or antagonist) results across multiple literature reports. The 
final set of reference chemicals included 37 for AR agonism and 28 for AR antagonism 
(Kleinstreuer et al., 2017).  

• The performance-based validation of the ‘‘AR pathway model’’ as an alternative 
screening method for one current Tier 1 assay (AR binding) was peer reviewed by the 
Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) Scientific Advisory Panel 
(SAP) in December 2014 and November 2017 (U.S. EPA, 2017, 2014a).  

• In response to some of the recommendations of the FIFRA SAP in 2017, EPA modified 
the AR pathway model to include an uncertainty characterization (Judson et al., 2020; 
Watt and Judson, 2018). 

 
In this White Paper, EPA announces its intent to use the results from the full AR pathway 
model as a fully validated alternative to the AR binding assay. 
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III. ER and AR HT Assays and Pathway Models  
 
A. General Considerations 

The prior two sections of this document addressed the historical framework for the EDSP and 
the approach for advancing the EDSP utilizing NAMs. This section will provide greater details 
on the strengths and limitations of the full ER and AR pathway models and the HT assays that 
the models use. The results of the full ER and AR pathway models are intended to be used as 
validated alternatives for a number of EDSP Tier 1 assays.   

Screening thousands of chemicals to identify potential estrogen and androgen bioactivity could 
cost millions of dollars and take decades to complete using current low throughput toxicology 
methods. Researchers from around the world, including from EPA and NIEHS, have 
developed rapid and relatively inexpensive HT in vitro screening and computational toxicology 
approaches to serve as potential alternatives to low throughput assays. The ER pathway 
model combines the results from 18 HT assays from the ToxCast and Tox21 research 
programs (Judson et al., 2015). The AR pathway model combines the results from 11 HT 
screening assays from the ToxCast and Tox21 research programs (Kleinstreuer et al., 2017). 
The ER pathway model and AR pathway models were evaluated using a performance-based 
approach requiring the use of high-quality reference chemicals whose activity was determined 
by international test method validation efforts and systematic literature review. Both the ER 
pathway and AR pathway models have undergone extensive, external peer review by the 
FIFRA SAP (see Table 3) and are considered validated alternatives for certain Tier 1 assays.   

While EPA recognizes that the full ER and AR pathway models have uncertainties and 
limitations (see III.), EPA will be using results from these models as alternatives for certain Tier 
1 screening assays. EPA continues efforts to address limitations. For example, the ToxCast 
assays have limited to no metabolic capability, but the Phase I metabolism capability is in 
development (Deisenroth et al., 2020) and has been applied to over 700 ToxCast chemicals 
(Hopperstad et al., 2022). This metabolic uncertainty will be considered in WoE evaluations of 
each chemical’s potential for estrogen and androgen bioactivity.   
 
B. Estrogen Receptor Pathway Model 
 
The use of HT assays and computational model approaches are consistent with the 
recommendations of the 2007 NRC report (NRC, 2007). This report recommended a 
fundamental shift from chemical safety decisions based on apical animal endpoints toward 
broader application of in vitro testing and predictive toxicology methods. EPA has moved to 
quantifying the perturbation of molecular events and cellular pathways using higher 
throughput, in vitro assays and integrating results across diverse chemical classes and 
biological endpoints using computational modeling.  
 
The ER pathway model is a computational approach that integrates activity from 18 HT in vitro 
assays to characterize ER bioactivity (Judson et al., 2015). The ER pathway model is based 
on the series of molecular events that typically occur in a nuclear receptor-mediated response 



  

Page 24 of 55 

 
 

(Judson et al., 2015). The 18 HT assays include biochemical and cell-based in vitro assays 
that evaluate perturbations of ER pathway responses at key activity sites within the cell 
including ER receptor binding, ER receptor dimerization, chromatin binding of the mature 
transcription factor, gene transcription, and changes in ER-dependent cell proliferation (Judson 
et al., 2015). The ER pathway model integrates the activity patterns across the 18 assays to 
predict whether a chemical is a potential ER agonist or antagonist and whether there is “assay 
interference” or cytotoxicity. Assay interference refers to activity in an assay that is likely not 
due to interaction of the chemical with its intended target (e.g., ER) or assay endpoint. Assay 
interference is a phenomenon whereby assays designed to measure binding to a protein or 
perturbation of a given pathway may produce false signals when the target protein itself, or 
other pathways in the system, are altered non-specifically. For instance, a chemical could 
cause protein denaturation, which could give rise to a false positive signal in cell-free, 
radioligand competitive-binding assays.  
 
The output of the ER pathway model provides an area under the curve (AUC) value for the 
potential of a chemical to cause ER agonism and/or ER antagonism. The AUC scores 
represent the chemical or concentration-specific probabilities that the chemical is interacting 
with the corresponding receptor. AUC scores are scaled to activity and range from 0 to 1 
(e.g., AUC (ER agonist) = 1 for 17α-ethinylestradiol). ER Pathway AUC (agonist) scores ≥0.1 
are considered “active,” while AUC (agonist) values between 0.01 and 0.1 may indicate weak 
or ambiguous potential activity and are considered inconclusive (Judson et al., 2015). The 
AUC score is highly correlated with the logarithm of the chemical potency against the receptor 
(ER or AR). 
  
Full concentration-response data for all 18 HT ER pathway assays were collected on 1,812 
chemicals (Judson et al., 2015). Of the 1,812 chemicals evaluated, 111 (6.1%) were predicted 
to be strongly ER active in agonist and/or antagonist mode. The ER pathway model was 
constructed to assess assay interference, including cytotoxicity (which is the most prominent 
cause of false-positive activity), and is accounted for within the ER pathway modeling scores 
(Watt and Judson, 2018; Judson et al., 2015). Cytotoxicity in cell-based assays may confound 
receptor antagonism in particular (i.e., it may be difficult to distinguish the source of a 
decreased assay signal, resulting in higher false positive rate in those particular assays). 
Additional analysis on the effect of cytotoxicity on HT screening data has been reported 
(Judson et al., 2016), as have the results on the variability in the curve-fitting for the HT 
screening assays (Watt and Judson, 2018). Cytotoxicity was measured using a collection of 35 
assays in the ToxCast battery that detect cytotoxicity or other forms of cell loss across several 
cell lines and primary cell types (Judson et al., 2016). 
 
The National Toxicology Program Interagency Center for the Evaluation of Alternative 
Toxicological Methods (NICEATM) constructed a database of high-quality guideline or 
guideline-like rodent Uterotrophic studies (OCSPP 890.1600 and OECD 440 Test Guidelines 
OECD, 2018b; U.S. EPA, 2011a) (Kleinstreuer et al., 2016). The Uterotrophic bioassay is a 
short-term in vivo screen for estrogenicity and is one of the 11 EDSP Tier 1 screening assays 
(see Table 1). EPA EDSP Uterotrophic assay, OCSPP 890.1600, is performed on immature 
female rats or ovariectomized (OVX) adult female mice or rats (U.S. EPA, 2009d), and is a 
measure of in vivo estrogen receptor agonism in female mammals without an intact 
hypothalamic-pituitary-gonadal axis or in pre-pubertal animals. A comparison between the 
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results from the ER pathway model and the curated NICEATM database of in vivo rodent 
Uterotrophic bioassays was subsequently performed to evaluate the performance of the in vitro 
ER pathway model that predicts estrogenic activity. A literature review of journal articles with 
uterotrophic studies resulted in the identification of 442 studies using 103 chemicals, which 
met all six minimum criteria to be considered “guideline-like” uterotrophic, and were used to 
evaluate (Browne et al., 2017; Browne et al., 2015; U.S. EPA, 2014b) the performance of the 
ER pathway model against the Uterotrophic assay.  
 
A performance-based approach was used to evaluate the ER pathway model for agonist 
activity (see Section II.A. Performance-Based Approach to Establishing Confidence in NAMs). 
The performance evaluation included consideration of chemicals tested previously in both in 
vitro and in vivo assays as reference chemicals, and results of EDSP Tier 1 screening assays 
for List 1 chemicals (Browne et al., 2017; Browne et al., 2015). From this analysis performance 
metrics were provided for in vitro reference chemicals (28 positives; 12 negatives), in vivo 
reference chemicals (30 positives; 13 negatives), chemicals from guideline-like uterotrophic 
studies (57 positives; 48 negatives), and chemicals from Tier 1 studies (0 positives; 49 
negatives).  
 
For ER Agonist activity, the ER pathway model sensitivity was 93%, 97%, 89%, and ‘not 
meaningful’ in the in vitro reference, in vivo reference, uterotrophic, and Tier 1 chemicals, 
respectfully. There were no positives among the Tier 1 chemicals, consequently sensitivity 
scores were not meaningful. Sensitivity is most important for screening as false negatives are 
to be avoided. Specificity was 100%, 89%, 80%, and 100% in the in vitro reference, in vivo 
reference, uterotrophic, and Tier 1 chemicals, respectfully. These metrics reflect the 
performance of the ER pathway model when inconclusive chemicals (0.001 < AUC < 0.0501) 
were excluded from the calculations. When the inconclusive chemicals were considered 
positive, sensitivity remained similar, but specificity decreased. To ensure a transparent 
scientific process, EPA has published the methodology used for the ER pathway model, the R-
code for the model, and the performance-based validation (Browne et al., 2017; Browne et al., 
2015; Judson et al., 2015).  
 
In 2014, the FIFRA SAP reviewed the full 18 HT assay ER pathway model (U.S. EPA, 2014a). 
In the final report of the December 2014 meeting, the SAP did not recommend substituting the 
ER model for the Uterotrophic assay at that time (see page 14 in the final report) and 
suggested that EPA consider: 1) additional Uterotrophic assays on chemicals in the low/middle 
AUC range to test predictive capacity of the ER Model for weak ER agonists and 2) perform 
similar comparisons of ER model scores of weak ER agonists with other in vivo assays in the 
Tier 1 battery relevant to estrogenicity. To address the SAP’s recommendations, EPA 
published additional scientific support for the ER pathway model including uncertainty and 
sensitivity analyses (Watt and Judson, 2018; Watt, 2017; Judson et al., 2016; Browne et al., 
2015; Judson et al., 2015), as well as a curated Uterotrophic database which provided the 
systematic process for selecting in vivo reference chemicals (Kleinstreuer et al., 2016). EPA 
also considered the SAP recommendations in developing the June 2015 FR notice that 
introduces the use of HT assays and computational models, including the proposed use of the 
full ER pathway model as an alternative to three EDSP Tier 1 screening assays (U.S. EPA, 
2015a).  
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In 2019, OECD published a case study on the use of an integrated approach to testing and 
assessment (IATA) for estrogen receptor active chemicals using the ER pathway model 
(OECD, 2019). This IATA describes an integrated testing strategy (ITS) to identify ER 
bioactivity primarily for Tier 1 screening without the use of animal testing. The ITS relies on a 
pre-defined data interpretation procedure designed to provide consistent and reliable 
information on whether the substance tested may act as an ER agonist. The combination of up 
to 16 in vitro HT screening assays covers multiple key events of the pathway indicative of ER 
activation (agonist mode). (Note that there are 16 assays that were used to assess ER 
agonism and two additional assays that assess ER antagonism; antagonism is not the purpose 
of this IATA.) Consequently, the OECD case study is supportive of the performance-based 
validation approach EPA has used to support the use of the ER pathway model as a EDSP 
Tier 1 screening tool.  
 
C. Androgen Receptor Pathway Model 
 
For the AR model, EPA followed a process similar to that for the ER pathway model. The AR 
pathway model integrates activity from 11 HT in vitro assays to characterize AR bioactivity. 
The suite of 11 in vitro assays evaluates perturbations of AR pathway responses at key activity 
sites within the cell including AR receptor binding, dimerization, transactivation, and gene 
transcription (Kleinstreuer et al., 2017). Unique to the AR pathway model, a pair of antagonist-
mode transactivation assays were performed at two different reference agonist concentrations, 
providing the ability to observe a diagnostic shift in potency indicative of receptor-mediated 
antagonist activity. The AR pathway model integrates the activity patterns across the 11 
assays to predict whether a chemical is a potential AR agonist or antagonist or whether there 
is “assay interference” or cytotoxicity. The output of the AR pathway model provides an AUC 
value for the potential of a chemical to cause AR agonism and/or AR antagonism. The AUC 
scores represent the chemical or concentration-specific probabilities that the chemical is 
interacting with the corresponding receptor. Given that AR antagonism was the biological 
response of greatest concern, the AUC scores were scaled to yield a value of 1 for the 
antagonist positive control hydroxyflutamide. AR Pathway AUC (antagonist) scores ≥0.1 are 
considered “active” (Kleinstreuer et al., 2017). AR antagonist activity is easily confounded by 
cytotoxicity; hence, results were also combined with cytotoxicity information via a confidence 
scoring system to contextualize the results and reduce potential false positives (addressing 
this source of assay interference). Further analyses binned chemicals as positive, negative, or 
inconclusive for AR pathway bioactivity based on the AUC scores and confidence scores. For 
example, a chemical with an AR pathway AUC score greater than 0.1 (approximate activity at 
100 μM) and confidence score >1 was considered positive with higher AUC scores 
corresponding to higher potency (Kleinstreuer et al., 2018; Kleinstreuer et al., 2017).  
 
Activity in the AR pathway model was examined across 1,855 chemicals from the ToxCast 
library (Kleinstreuer et al., 2017). Included in the chemical library were reference AR agonists 
and antagonists, as well as selective androgen receptor modulators (SARMs). Out of 1,855 
chemicals tested in all 11 AR pathway assays, 1,461 were predicted to be inactive in the AR 
pathway model (agonist and antagonist AUC values below 0.001), 33 chemicals were 
predicted to be AR agonists (AUC values >0.1), and 192 chemicals were predicted to be AR 
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antagonists (AUC values >0.1). The remaining 174 chemicals were predicted to have weak or 
inconclusive AR pathway activity (AUC values of 0.001 to 0.1).  
 
A performance-based approach was used to evaluate the AR pathway model for both agonist 
and antagonist activity using a selection of reference chemicals (see Section II.A. 
Performance-Based Approach to Establishing Confidence in NAMs). The reference chemicals 
with in vitro AR agonist or antagonist activity (or lack of activity) were compiled from 
international test method validation efforts and semiautomated systematic literature reviews 
(Kleinstreuer et al., 2017). Reference chemical concentrations that activated or inhibited AR 
pathway activity were identified to establish a range of potencies with reproducible reference 
chemical results. Performance metrics were provided for in vitro agonist reference chemicals 
(8 positives; 21 negatives) and in vitro antagonist reference chemicals (20 positives; 8 
negatives).  
 
For AR agonist activity, performance metrics were 100% sensitivity and 95% specificity.  For 
AR antagonist activity, performance metrics were 94.4% sensitivity and 100% specificity. 
These metrics reflect the performance of the AR pathway model when inconclusive chemicals 
(0.001 < AUC < 0.1) were excluded from the calculations. When the inconclusive chemicals 
are included in the positive set the sensitivity and specificity for the agonist model is 100% and 
90.5%, respectively, while the sensitivity for the antagonist mode is 94.4% and specificity 
remains 100% (Kleinstreuer et al., 2017). 
 
To further assess the performance of the AR pathway model, Tier 1, List 1 AR binding data (39 
chemicals) were also compared with model scores (Kleinstreuer et al., 2017). When making 
these comparisons and accepting the Tier 1 AR binding results as accurate (which may not be 
the case), the AR pathway model sensitivity was 22% and specificity was 80%. However, 
these differences are understandable when considering the following information. Twenty-four 
chemicals were “negative” in both the AR pathway model and the Tier 1 binding assay, and 
two were identified as “positive” in both. The model identified seven chemicals as “negative” 
while the Tier 1 assay identified these same chemicals as “positive”, and six were identified as 
“positive” in the model but not in the Tier 1 assay (Kleinstreuer et al., 2017). However, with the 
exception of phosmet, these seven chemicals in the AR binding assay had IC50 values (half 
maximal inhibitory concentration) well over 100 μM and so would be expected to be negative in 
the model, as the highest tested concentrations in ToxCast and Tox21 were ≤100 μM. 
Likewise, the discrepancy with phosmet is explained in the cited publication (Kleinstreuer et al., 
2017). Six List 1 negative/model positive chemicals were also flagged as potential false 
positives using the antagonist confirmation assay data.  
 
Not screening at concentrations higher than 100 µM may lead to false negatives. However, in 
general, EPA limits the testing to 100 µM for several reasons. First, it is very unlikely that the 
target sites (such as the uterus) in humans, fish, or wildlife will be exposed to concentrations 
higher than 100 µM. Even if concentrations of 100 µM or more could be achieved at the target 
sites, it is possible that such high concentrations would exceed the maximum tolerated dose 
(i.e., evidence of toxicity other than endocrine-related would be evident), which may confound 
interpretation of the results. Then there are technical problems with screening at such high 
concentrations. The ER and AR binding assay test guidelines (OCSPP 890.1250 and 
890.1150) specify avoiding screening compounds at concentrations that are insoluble. 
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Although the AR and ER binding assays are cell-free, other screens (like the ERTA, OCSPP 
890.1300) are not and specify screening at concentrations that are not cytotoxic. Thus, it is 
important to recognize that screening above 100 µM in cell-free assays may yield results that 
are qualitative in nature. Often, either solubility or cytotoxicity issues occur at doses exceeding 
100 µM. For example, of the 7 false negatives from the AR paper (Kleinstreuer et al., 2017), all 
were either tested to above the in vivo point of departure (6/7) (i.e., chemicals were regulated 
based on toxic effects occurring at a lower concentration) or above the in vitro cytotoxicity limit 
(6/7). Furthermore, a common maximum target concentration enabled a rapid, high throughput 
screening experimental design for all chemicals screened, as large chemical libraries were 
screened in a blinded fashion for ToxCast and customization of the design for each chemical 
(i.e., determining the maximum concentration based on solubility and cytotoxicity) would have 
been resource prohibitive. 
 
There were 51 chemicals with AR pathway model data and ICCVAM validation data set for the 
AR binding assay. Twenty two were positive in both, nine were model positive/AR binding 
assay negative, one was model negative/AR binding assay positive, and 19 were negative in 
both, which yielded a model sensitivity score of 96% and a specificity score of 68% 
(Kleinstreuer et al., 2017). The AR pathway model provides evidence that some of the 
ICCVAM designations for four chemicals (17α-estradiol, 4-cumylphenol, apigenin, and 
bisphenol B) might need additional investigation(Kleinstreuer et al., 2017). To ensure a 
transparent scientific process, EPA has published the methodology for the AR pathway model, 
all supporting information, and the R-code for the model (Watt and Judson, 2018; Kleinstreuer 
et al., 2017). 
 
The AR pathway HT assays, AR pathway model, and the performance-based validation of the 
AR pathway model were independently reviewed by the FIFRA SAP in December 2014 (U.S. 
EPA, 2014a). Following the 2014 FIFRA SAP recommendation, EPA revised the AR pathway 
model. EPA sought the FIFRA SAP’s advice on the revised model in November 2017 SAP 
meeting  (U.S. EPA, 2017). The November 2017 SAP recommended that EPA continue to 
investigate the emerging scientific issues for HT testing and use of computational models 
including subset models (U.S. EPA, 2017, see https://www.regulations.gov/document/EPA-
HQ-OPP-2017-0214-0024), which has now been completed and published (Judson et al., 
2020). The Judson et al. (2020) paper provides an updated model consisting of 14 assays, 
with three additional assays included to expand the biological coverage of the AR pathway and 
is responsive to SAP2017 recommendations. As part of the implementation of the full AR 
pathway, EPA will look closely at the results of both the 11 and 14 assay pathway models. 
EPA’s detailed responses to the recommendations of the November 2017 SAP can be found 
elsewhere (U.S. EPA, 2022a).   
 
D. Strengths in the ER and AR Pathway Models 
 
The use of HT assays and computational modeling provides more rapid data generation, 
reduced cost to generate toxicity data, and can result in more directed and hypothesis-driven 
toxicity and epidemiological studies. The ER and AR pathway models primarily use in vitro 
assays that include human cells or genetic material, which makes these assays particularly 
relevant for assessing hazards in humans as mandated for evaluation by the FFDCA. 



  

Page 29 of 55 

 
 

 
Prior to EPA’s work on HT assay and computational models such as the ER and AR pathway 
models, screening chemicals for endocrine bioactivity was conducted using a combination of 
11 low-throughput in vivo and in vitro tests (Tier 1 assays of Tier 1 battery; see Table 1) that 
are time-consuming and use many laboratory animals. Following WoE evaluation of the Tier 1 
results, EPA determines whether additional testing (e.g., Tier 2, targeted studies) is needed to 
perform a risk assessment. OCSPP has been working with the ORD to more rapidly screen 
chemicals and minimize the use of animal testing by expanding the set of HT tools for use in 
the EDSP.  
 
The ER and AR pathway models offer many advantages compared to the current lower 
throughput methods in the EDSP Tier 1 battery (Kleinstreuer et al., 2018; Kleinstreuer et al., 
2017; Browne et al., 2015; Judson et al., 2015; U.S. EPA, 2014a). Both models integrate 
multiple biochemical cell-free and cell-based HT in vitro assays that probe different points 
along an AOP using multiple technologies. The models provide the ability to prioritize and 
screen a large set of chemicals from diverse chemical classes, with human and ecological 
exposure potential, for additional in vivo endocrine testing at a lower cost and a fraction of the 
time needed to test individual chemicals using current EDSP Tier 1 methods. As part of the 
transition to HT and computational methods in the EDSP, EPA has screened approximately 
1,800 chemicals for ER and AR-mediated activity using these models. Finally, these models 
provide non-animal screening alternatives for four Tier 1 assays: in vitro ER binding, in vitro 
ER transactivation (ERTA), in vivo Uterotrophic, and in vitro AR binding.  
 
The ER and AR pathway-based approaches integrate multiple assays mapping to many 
pathway-based KEs, which provide a more holistic description of the potential of a chemical’s 
ability to activate or inhibit signaling. The ER and AR pathway models and associated HT in 
vitro assays cover a broader range of biological processes than their Tier 1 in vitro 
counterparts (ER binding, ERTA, and AR binding assays) that focus on receptor binding and 
can process chemicals more rapidly than lower-throughput transactivation-type assays. These 
types of network models integrate concentration-response profiles (or combine data) from 
multiple assays assessing activity at key points in the ER or AR pathway to compensate for the 
individual limitations of any one assay. That is, the ER and AR pathway models combine data 
from multiple assays to reduce technology-specific assay interference (for example by 
reducing false positives). Cytotoxicity and response specificity are considered and flagged 
(Watt and Judson, 2018; Kleinstreuer et al., 2017; Judson et al., 2015). 
 
In summary, ER and AR pathway models are non-animal methods developed for the rapid and 
cost-effective assessment of ER- or AR-mediated chemical bioactivity. They were evaluated 
using a well-defined set of reference substances representing a range of chemical classes and 
potencies. Both models include procedures for evaluating chemical cytotoxicity and accounting 
for processes that can cause assay interference. Performance-based validation has led to the 
curation and storage of legacy in vitro and in vivo toxicity studies which can be used as a  
global resource to compare with the HT screening data.  
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E. Limitations and Uncertainties in the ER and AR Pathway Models 
 
EPA chose to focus research efforts on development and evaluation of ER and AR pathway 
HT assays and computational models based on classical ER- or AR-mediated-transcriptional 
activation processes. Neither NAM was designed to specifically identify chemicals that affect 
bioactivity through non-genomic signaling mechanisms (Fuentes and Silveyra, 2019; Foradori 
et al., 2008). There are other EDSP assays in the Tier 1 screening battery that complement the 
ER pathway and AR pathway models. These in vivo assays (e.g., Male and Female Pubertal, 
Hershberger, Uterotrophic, and Fish Short-term Reproduction (FSTR) assays, are capable of 
detecting responses resulting from both classical and/or non-classical ER or AR signaling, as 
applicable to species, sex, and test system (see Table 1).  
 
Almost all the in vitro assays that inform the ER pathway model interrogate ER-α-
mediated (ESR1) activity (Judson et al., 2015), and a subset of these 
assays (~33%) assess activity mediated by ER-β (ESR2) as well. The Tier 1 ERTA 
assay (OCSPP 890.1300) detects hERα-mediated transcriptional activity, which 
is functionally very similar to the transcriptional activation assays used in the ER pathway 
model. The Tier 1 ER binding assay (OCSPP 890.1250) is performed with rat uterine cytosol, 
whereas the Uterotrophic assay (890.1600) is an in vivo assay that measures rat uterine 
response to chemical exposure. Studies have shown that the rat uterus estrogen receptor 
profile consists primarily of ER-α (ESR1) with much lower levels of ER-β (ESR2) and G 
protein-coupled estrogen receptors (GPERs) (Hutson et al., 2019; Blesson and Sahlin, 2012). 
Thus, there may be limitations in the ability of the in vitro assays comprising the ER model or 
the Tier 1 ERTA or ER binding assays to fully characterize some tissue-dependent or lifestage-
dependent responses that may be operative in vivo, e.g., differential agonist/partial agonist 
actions of tamoxifen (a SERM in uterus and breast tissue) (Hu et al., 2015; Judson et al., 
2015). While the ER model identified all reference agonists, antagonists and SERMs as being 
ER-active, the ER model may not always accurately predict whether in vivo ER activity may be 
antagonistic, agonistic or both. However, while the Uterotrophic in vivo model does contain 
ER-α, ER-β and GPERs, the 890 guideline only measures responses in one tissue (i.e., 
uterine weight) and the protocol only identifies estrogen agonism. Tier 1 is designed to assess 
the potential for bioactivity, and further information about dose-response is provided by Tier 2 
tests. As noted previously, EPA will accept the results of the ER pathway model as an 
alternative for the in vivo Uterotrophic assay on a case-by-case basis. 
 
Both HT in vitro and low-throughput in vitro assay results may be influenced by physical-
chemical properties of the test chemical and the chosen test system. These issues help define 
the domain of applicability of these assays. Limitations in ER pathway HT assays underlying 
the ER pathway model (Watt, 2017; Browne et al., 2015; Judson et al., 2015) and AR pathway 
model (Kleinstreuer et al., 2017) assays are similar to those identified in other in vitro systems 
such as: limited or lack of xenobiotic metabolic capacity; technical assay interference; chemical 
insolubility; adsorption of chemical to testing surfaces; use of transformed cells from 
organs/tissues that lack biological context; and chemical volatility. HT in vitro and low-
throughput in vitro assay results may be influenced by physical-chemical properties of the test 
chemical and the chosen test system. Recent analysis by (Mcmullen et al., 2018) on 391 
substances in ToxCast “observed a strong relationship between the fraction of positive results 
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in ToxCast assays and compound volatility” across a range of endpoints based on the upper 
two quartiles of vapor pressure. Other papers have found similar effects (Fischer et al., 2017). 
The Armitage et al. (2014) mass balance models do not consider cross-well contamination due 
to volatilization, but do consider adherence to well walls, evaporative losses (via excessive 
portioning into the head space), and protein binding. These effects have, in part, been 
independently confirmed experimentally in the peer-reviewed literature (Henneberger et al., 
2020; Huchthausen et al., 2020; Birch et al., 2019; Henneberger et al., 2019). Substances with 
an experimental or modeled Henry’s Law Constant ≥ 0.1 Pa·m3/mol1 (OECD, 2019) may 
present technical difficulties for testing. Given these uncertainties, EPA will consider whether 
negative or equivocal ER and AR bioactivity model results for substances could be due to 
physical-chemical parameters rather than a true lack of an effect.  
 
HT assays associated with the AR and ER pathway models and low throughput in vitro Tier 1 
assays have limited or no metabolic capability. Metabolism can occur in the in vivo 
Uterotrophic assay, and this is one reason EPA is accepting the results of the ER pathway 
model as an alternative for the in vivo Uterotrophic assay on a case-by-case basis. Because in 
vitro assays have limited or no xenobiotic metabolism, false positive results (chemical is 
detoxified in vivo) or false negative results (chemical is bioactivated in vivo) can occur. Both 
results may lead to mischaracterization of a chemical’s potential ER or AR bioactivity. 
Research indicates that the lack of metabolic competence in the ER pathway model limits the 
predictive capacity to quantitatively extrapolate from in vitro ER activation to in vivo 
Uterotrophic response (Conley et al., 2016). More recently, Gray et al. (2020) published on the 
limited extrapolation capacity of the AR pathway model to predict in vivo responses for anti-
androgens. One possible explanation is the role of toxicokinetic factors in extrapolation 
evaluations. For example, Casey et al. (2018) showed that when toxicokinetic factors were 
incorporated into the comparison, the quantitative in vitro-to-in vivo concordance was improved 
for ER activation (Casey et al., 2018). Information on a chemical’s metabolites may be 
available, e.g., in the published literature or as data in support of a pesticide registration. An 
in silico approach for the prediction of estrogenic bioactivity of chemical metabolites may also 
be used to supplement the predictions of the ER pathway model (Pinto et al., 2016).  
 
There are also ongoing approaches to provide metabolic competency in the HT assays 
including Tier 1 EDSP assays. For example, EPA researchers are using the Alginate 
Immobilization of Metabolic Enzymes (AIME) Platform to retrofit the ER transactivation assay 
with metabolic competence (Deisenroth et al., 2020) and has been applied to over 700 
ToxCast chemicals (Hopperstad et al., 2022). Another method involves the transfection of 
modified mRNAs to introduce metabolic capacity into cells (Degroot et al., 2018).  
 
Some logistical and capacity issues limit the use of the 18 ER HT assays and 11 AR HT 
assays for screening new chemicals. 

 Some HT assays are no longer commercially available (e.g., three original 
Novascreen2 assays in the ER pathway model). In contrast, the existing EDSP Tier 

 
1 This threshold is based on the indicator value presented in OECD Guidance Document 23 (OECD, 2019). 

2 Novascreen was acquired by Caliper Life Sciences, which was acquired by Perkin Elmer, which no longer offers the 3 
original Novascreen assays.  
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1 assays use widely available cell lines and testing protocols that can be run by EPA 
itself, a registrant or test order recipient with an appropriate laboratory, or any 
competent contract laboratory.  

 Some HT assays are proprietary commercial assays which may limit access to 
stakeholders interested in conducting the assays.  

 Robotic HT equipment and expertise may not be readily available everywhere. 

 
Although the EDSP is intended to consider humans and fish and wildlife, the ER and AR 
pathway models primarily use in vitro assays that include human cells or genetic materials. As 
discussed below, SeqAPASS can be used to assess the cross-species hazard potential.   
 
EPA expects to consider the uncertainties described here as part of the implementation of next 
steps laid out in the Section IX. Conclusion.  
 
 
F. Reduced or Minimal ER and AR Pathway Subset Models for Priority 
Setting 
 
Reduced or minimal ER and AR pathway subset models strive to provide equivalent 
performance as the full ER and AR pathway models using smaller and more flexible 
combinations of assays underlying the full model set. This is particularly important as many of 
the assays supporting development of the full ER and AR pathway models are proprietary or 
are no longer offered commercially. Moreover, the reduced or minimal ER and AR pathway 
subset models will be more cost effective.  
 
The following number of assay subsets are needed to provide an equivalent balanced 
accuracy relative to the full ER and AR pathway models for the entire set of tested chemicals: 
 
 As few as 4 ER Agonist Model assays (Judson et al., 2017) 
 As few as 5 AR Agonist Model assays (Judson et al., 2020) 
 As few as 6 AR Antagonist Model assays (Judson et al., 2020). 

 
No assay subset models were developed for the ER antagonist mode, although this was 
considered in the original ER pathway model publication (Judson et al., 2015). 
  
In developing the ER agonist subset model, some of the subset models (518 models of 65,535 
possible assay combinations in (Judson et al., 2017; Judson et al., 2015)) were able to achieve 
“acceptable” overall performance compared to the full pathway model. Here, “acceptable” 
means that the performance of the subset model was within the range of uncertainty provided 
by the bootstrapping sensitivity analysis using the method of Watt and Judson (Watt and 
Judson, 2018). An ER agonist subset model of 4 assays achieved a sensitivity of 98% and 
specificity of 92% compared to results from the full ER pathway model for the entire set of 
tested chemicals. Performance metrics were also provided for in vitro reference chemicals (28 
positives; 8 negatives) and in vivo reference chemicals (30 positives; 11 negatives). This same 



  

Page 33 of 55 

 
 

4-assay ER agonist subset model had a sensitivity of 89% and specificity of 100% with in vitro 
reference chemicals and a sensitivity of 97% and specificity of 91% with in vivo reference 
chemicals (Judson et al., 2017).   
 
The results for the best six-assay AR antagonist subset model and five-assay AR agonist 
subset model are not statistically different from the full model when variability is incorporated. 
The best five-assay AR agonist model has a sensitivity of 89% and a specificity of 98% when 
compared to the full AR pathway model for all tested chemicals. A five-assay AR antagonist 
subset model has a sensitivity of 97% and specificity of 96% for all chemicals when compared 
to the results of the full AR pathway model. The best 5-assay AR agonist subset models are 
not statistically different from the full model once its variability is accounted for, but sensitivity 
was less than 90%. A six-assay AR agonist subset model provides a sensitivity of 96% and 
specificity of 98% when compared to the results of the full agonism AR pathway model 
(Judson et al., 2020).  
 
When comparing against the in vitro reference compounds (37 agonist and 28 antagonist), as 
few as three assays for the antagonist and two assays for the agonist will achieve 100% 
sensitivity and specificity (Judson et al., 2020). Like the full ER and AR pathway models, 
uncertainties and limitations affect the use of these subset ER and AR pathway models. 
Unfortunately, many of the best performing subset models include assays that are no longer 
commercially available (although they or comparable alternatives are expected to become 
available in the future), and some are missing critical steps along the ER/AR activation 
pathways. Depending on the number of assays included, the sensitivity of the subset models 
was generally higher than the specificity (Judson et al., 2017).  
 
G. Summary for ER and AR Pathway Models  
 
Given the strengths discussed in Section III.C. as well as the uncertainties and limitations 
discussed in Section III.D., EPA has determined that the following NAMs may be used as 
alternatives for the following four (4) EDSP Tier 1 screening assays when evaluated on a 
chemical-by-chemical basis (each assay evaluated independently). EPA reviews the quality of 
available data across multiple lines of evidence. For the NAMs methods listed here, EPA will 
specifically consider the quality of the individual ToxCast assay data, and the level of 
confidence in and biological relevance of the predictions.  

 
(1) The Estrogen Receptor (ER) pathway model based on the full 18-assay 
ToxCast/Tox21 battery (Browne et al., 2015; Judson et al., 2015) may be used as an 
alternative for three current EDSP Tier 1 screening assays:  
 ER binding in vitro assay (OCSPP 890.1250; (U.S. EPA, 2009b)). 
 ER transcriptional activation in vitro assay (ERTA; OCSPP 890.1300; (U.S. EPA, 

2009c)). 
 In vivo Uterotrophic assay (rat) (OCSPP 890.1600; (U.S. EPA, 2009d)). 
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(2) The Androgen Receptor (AR) pathway model based on the full 11-assay 
ToxCast/Tox21 battery (Kleinstreuer et al., 2017) may be used as an alternative for one 
current EDSP Tier 1 screening assay: 
 AR binding in vitro assay (OCSPP 890.1150; (U.S. EPA, 2009a)). 

The full ER and AR pathway models offer many strengths compared to the current low-
throughput methods in the EDSP Tier 1 battery. The ER and AR pathway models integrate 
multiple biochemical cell free and cell-based HT in vitro assays that probe different key events 
using multiple technologies. The models provide the ability to prioritize and screen a large set 
of chemicals from diverse chemical classes at a lower cost and more quickly than using 
current EDSP Tier 1 methods. 
 
EPA continues to investigate the suitability of reduced ER and AR pathway assay sets and 
computational models as alternatives to the EDSP Tier 1 screening assays (Judson et al., 
2020; Judson et al., 2017) (See Section III). 
 
 
IV. Quantitative Structure-Activity Relationship (QSAR) Models 
 
EPA has determined that consensus [quantitative] structure-activity relationship ([Q]SAR) 
models are appropriate for use in priority setting of EDSP chemicals and as OSRI in 
combination with other relevant information. Two such QSAR models were developed by 
international consortia of experts led by EPA: Collaborative Estrogen Receptor Activity 
Prediction Project (CERAPP) to evaluate chemicals for potential ER activity (Mansouri et al., 
2016) and Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA) 
(Mansouri et al., 2020) to evaluate potential AR activities. Expert modelers and computational 
toxicology scientists from 35 international groups contributed structure-based models and 
results to one or both projects, with methods ranging from QSARs to molecular docking in 
order to predict binding, agonism and antagonism activities. In simple terms, experts used the 
ER and AR activity from the ER and AR pathway models to train QSAR models to predict ER 
and AR activity (Kleinstreuer et al., 2017; Judson et al., 2015). External evaluation sets used 
ER and AR data from public sources other than the ToxCast data used in training the models. 
The specific details of the ER and AR consensus model building and literature curation 
protocols are outlined in the CERAPP and CoMPARA publications (Judson et al., 2020; 
Mansouri et al., 2016). The CERAPP QSAR model is also discussed in the EPA White Paper 
for the December 2014 FIFRA SAP (U.S. EPA, 2014a, see 
https://www.regulations.gov/document/EPA-HQ-OPP-2014-0614-0003).  
 
Individual QSAR models developed for CERAPP and COMPARA were trained on the results 
for ~1,800 chemicals from the ER and AR pathway models respectively. Two classes of 
models were built: those that predicted potency and those that just predicted activity (active / 
inactive). The individual QSAR models were then evaluated using curated literature data from 
different sources (~7,000 results for ER and ~11,000 results for AR). To overcome the 
limitations of individual QSAR models, CERAPP and COMPARA combined many models 
together in a weighted fashion to generate consensus predictions for each chemical. Balanced 
accuracy is the arithmetic mean of specificity (true negative rate) and sensitivity (true positive 
rate). Overall balanced accuracy was 91% (CERAPP, ER agonist) and 74%-86% (CoMPARA, 
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AR antagonist). These consensus models were extended beyond the initial datasets by 
integrating them into the free and open-source web browser application OPERA (Mansouri et 
al., 2018) to avoid running every single model on new chemicals. This implementation was 
used to evaluate the entire EPA DSSTox database of ~800,000 chemicals and provided online 
on the EPA’s CompTox chemicals dashboard. The ER and/or AR bioactivities for additional 
chemicals may be used to refine the individual QSAR models and associated consensus 
models for CERAPP and COMPARA. 
 
There are different sources of uncertainty in the CERAPP and CoMPARA QSAR consensus 
models inherited from the underlying training data. Both the COMPARA and CERAPP QSAR 
consensus models were built using AR and ER ToxCast datasets available at the time as 
training data (Judson et al., 2020; Mansouri et al., 2020; Mansouri et al., 2016; Judson et al., 
2015) and evaluated against well-known reference compounds. Thus, the goal is to predict in 
vitro ER or AR activity, with known limitations including differing concentration ranges in vitro, 
limited metabolic capacity, varying activity of selective AR modulators (SARMs), and other 
possible experimental artifacts and errors. As discussed in Section III.E, the likelihood of 
chemical volatilization, need for metabolism or metabolite prediction (Mansouri et al., 2020; 
Pinto et al., 2016), number of technical and analytical replicates, or possible differential 
partitioning or binding to plastic in vitro should be investigated when using any in vitro data to 
limit the impact of false negatives or positives. These limitations and uncertainties are 
applicable across all QSAR model results which were trained on the HT in vitro data. As such, 
EPA intends to consider the results of the QSAR models carefully on a case-by-case basis that 
factors in information from additional lines of evidence. To account for the limitations of the 
models and to provide maximum transparency around predictions, the OPERA implementation 
of CERAPP and CoMPARA provides an assessment of the applicability domain, as well as an 
accuracy estimate and the most similar structures for each predicted chemical from the 
knowledge base of the respective model; this assessment does not account for the limitations 
and uncertainties relevant to the in vitro data noted above.  
 
Based on the current strength of the science and despite its limitations, EPA has determined 
that CERAPP and CoMPARA QSAR consensus models can be used for priority-setting 
purposes and for consideration as use as OSRI in WoE in combination with other relevant 
information under the EDSP. 
 
 
V. Integration of Bioactivity and Exposure 
 
In August 1998 (EDSTAC, 1998), the EDSTAC recommended that data resulting from HT 
screening assays “will be combined with exposure-related information…for the purpose of 
setting priorities for T1S [Tier 1 Screening].” The January 2013 FIFRA SAP (U.S. EPA, 2013) 
recommended that “exposure potential could be incorporated into the ranking and prioritize 
chemicals for further testing”.  

In July 2014, EPA brought to the SAP for review scientific issues associated with new HT 
methods to estimate chemical exposure for humans. Exposure Forecasting (ExpoCast) is an 
EPA ORD initiative to develop the necessary approaches and tools for rapidly prioritizing and 
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screening thousands of chemicals based on the potential for human exposure. This focus of 
ExpoCast is distinct from many existing traditional, lower throughput exposure tools that 
require considerable data to generate chemical-specific exposure predictions for screening-
level assessments or full regulatory risk assessments. ExpoCast efforts have focused on 
providing quantitative exposure predictions while empirically assessing the uncertainty by 
combining multiple exposure models or chemical-specific information and calibrating the 
predictions with available biomonitoring data. EPA refers to this framework as the Systematic 
Empirical Evaluation of Models (SEEM). New methods for ExpoCast considered for 
prioritization of chemical screening in the EDSP were favorably reviewed by the July 2014 
FIFRA SAP (U.S. EPA, 2014c, see https://www.epa.gov/sites/default/files/2015-
06/documents/072914minutes.pdf). 

The currently published ExpoCast model is limited to making exposure predictions for the 
general population due to the US NHANES data used to calibrate it. However, ORD is 
currently expanding application of the model to occupational populations. Once completed, the 
model can be used to estimate occupational exposures employing methods comparable to 
what was evaluated by the 2014 SAP. 

In addition to predictions of exposure, the July 2014 SAP reviewed high throughput 
toxicokinetic (HTTK) methods for extrapolating in vitro doses to in vivo concentration (in vitro-
to-in vivo extrapolation or IVIVE) for chemicals that have been run in a battery of HT endocrine 
screening assays (e.g., ToxCast). HTTK provides a bridge between bioactivity measured in the 
HT screening assays and exposure by either predicting tissue concentrations from an 
administered dose (i.e., what has been called forward toxicokinetics) or inferring administered 
doses that would be needed to cause tissue bioactive concentrations in vivo (i.e., reverse 
toxicokinetics). The SAP agreed on the importance of applying HTTK to the HT bioactivity 
measurements to provide a dose context and better discriminate between chemicals for 
prioritization. 

In December 2014, EPA asked the FIFRA SAP for advice on the use of an Integrated 
Bioactivity Exposure Ratio (IBER) approach to rank and prioritize chemicals for further EDSP 
consideration. In the IBER approach, reverse toxicokinetics is used to estimate the daily 
administered dose (mg/kg BW/day) necessary to produce steady-state in vivo blood 
concentrations equivalent to bioactive concentrations. These bioactive concentrations include 
those showing biological activity in the endocrine-related HT screening assays or the 
estimated potency values from the ER and AR pathway models. The putative bioactive 
administered doses can then be directly compared with predicted exposures (mg/kg BW/day) 
as portrayed in Figure 1. The extrapolated in vivo bioactive dose and the modeled exposure 
estimates are then used to prioritize chemicals. Considered together, these data indicate 
chemicals for which activity and exposure may overlap or be close enough to use in a priority 
setting tool for EDSP Tier 1 screening. 
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Figure 1. A graphical representation of the Integrated Bioactivity-Exposure Ratio (IBER) approach indicating no priority 
chemicals (those that either have no significant bioactivity or no potential exposure), low (chemicals for which extrapolated 
bioactive intake doses are considerably higher than potential exposures), medium, and high priority (chemicals for which 
bioactivity and exposure concentrations are close or overlapping). 

Prioritizing environmental chemicals based solely on potential bioactivities may not be 
sufficiently protective for a chemical which may be less potent but also have high estimated 
exposures (U.S. EPA, 2014a). Though there are recognized sources of uncertainty around 
bioactivity, toxicokinetic, and exposure model estimates, these data may still be useful to 
prioritize chemicals for EDSP Tier 1 screening (U.S. EPA, 2014a). EPA considers the IBER 
approach appropriate for use in prioritizing chemicals with potential endocrine effects in 
combination with other prioritization approaches. The IBER approach is especially useful for 
the thousands of chemicals for which other sources of bioactivity and exposure information do 
not exist. 
 
In addition to these SAP reviews, numerous articles on HT in vitro assays (Wambaugh et al., 
2014; Rotroff et al., 2013; Kavlock et al., 2012; Rotroff et al., 2010), toxicokinetics (Wetmore et 
al., 2014; Wetmore et al., 2013; Rotroff et al., 2010), and exposure modeling (Wambaugh et 
al., 2014; Wambaugh et al., 2013; Judson et al., 2011) have appeared in peer-reviewed 
journals, broadly engaging the scientific community relative to potential use of these tools by 
EPA. The use of an in vitro to in vivo extrapolation approach that employs HT toxicokinetic 
data and modeling to estimate NAM-derived administered equivalent doses has been 
demonstrated in the literature, beyond endocrine-related bioactivity (Beames et al., 2020; 
Friedman et al., 2020; Wegner et al., 2020; Haggard et al., 2019; Honda et al., 2019; Pham et 
al., 2019; Casey et al., 2018; Wetmore, 2015). Comparison of NAM-derived administered 
equivalent doses to exposure to derive bioactivity exposure ratios for prioritization has also 
been demonstrated (Haggard et al., 2019; Thomas et al., 2019; Wetmore et al., 2015). 
Ongoing data collection efforts continue to increase the coverage of chemical- and species-
specific in vitro toxicokinetic data (Black et al., 2021). At the same time, the toxicokinetic 
methods will also be refined over time (see discussion in Wambaugh et al., 2019; Bell et al., 
2018; Wambaugh et al., 2018; Wambaugh et al., 2015). New HT in vitro toxicokinetic assays 
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and models can refine toxicokinetic assumptions (for example, replacing 100% bioavailability 
with chemical-specific estimates) as well as expand exposure routes (to allow, for example, the 
calculation of dermal and inhalation equivalent doses) (Breen et al., 2021).   
 

EPA considers the IBER approach appropriate for use in priority setting in combination with 
other prioritization approaches and use as OSRI in WoE in combination with other relevant 
information. 
 
 
VI. Interspecies Extrapolation using SeqAPASS 
 

The EDSTAC recommended that EPA screen for endocrine disruption potential not only in 
humans but also in fish and wildlife. Consequently, when the EDSP was established in 1998, 
EPA used its discretionary authority under FFDCA to have the program focus on screening 
and testing for endocrine disruption in both humans and fish and wildlife (63 FR 42852 and 63 
FR 71542). Currently, human and environmental risk assessments for chemicals use only a 
limited number of model surrogate species to generate bioactivity or toxicity test data. This 
creates a need to extrapolate potential bioactivity/susceptibility across multiple species and 
taxa. Increased demand for rapid, yet scientifically-sound, predictive approaches that 
maximize the use of existing data have been driven by reductions in testing resources, a global 
interest in reducing animal use (U.S. EPA, 2021a, 2019), and an increasing demand to 
evaluate chemicals in a timely and reliable manner. In response, EPA developed a fast, online 
screening tool, Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS), 
that allows researchers and regulators to use available knowledge regarding species’ 
sensitivity to chemicals together with protein sequence information to transparently predict 
chemical susceptibility for hundreds of other species (Lalone et al., 2018; Ankley et al., 2016; 
Lalone et al., 2016; Perkins et al., 2013).  

Many chemicals, including endocrine-active compounds, exert their biological effects through 
interactions with proteins. SeqAPASS uses available protein sequence and structural 
information to understand cross species conservation at the molecular level, which is used to 
predict chemical susceptibility (Figure 2). To examine the extent to which a protein may be 
conserved across species/taxa, EPA is utilizing a three-step process (Levels 1 – 3) within 
SeqAPASS, taking advantage of well-established, publicly accessible, and continuously 
expanding curated protein sequence information. The depth of the SeqAPASS evaluation 
depends on the extent to which the protein has been characterized along with how much 
information is available on a chemical-protein interaction. Therefore, the SeqAPASS tool was 
created with the flexibility to take advantage of existing information and generate susceptibility 
predictions at each level of the analysis.  

The initial step (Level 1) of the process compares the entire primary amino acid sequence of 
the target species’ protein from a known sensitive species to the protein sequences of all other 
species for which information is available. At the same time, ortholog candidates (i.e., 
sequences that have diverged because of a speciation event and are therefore more likely to 
have similar function) are identified to set possible cut-offs for whether a species may be 
susceptible or not. If information is available from curated sources and from the literature 
regarding known functional domains (e.g., ligand binding or enzymatic regions of the 
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sequence), the analysis proceeds to Level 2 which compares these functional domains across 
species. This underscores the need to have curated databases on functional domains across 
species and their critical amino acid residues. 

The Level 3 evaluation requires knowledge of critical amino acid residues, such as those that 
form hydrogen bonds with ligands or are involved in the catalytic region of enzymes, which are 
important in the chemical-protein interaction. These amino acids can be compared across 
species to understand similarity and predict susceptibility (Lalone et al., 2018). Using existing 
data from model organisms to inform predictions reduces the need for additional resource-
intensive toxicity testing. SeqAPASS minimizes the complexity of protein sequence and 
structural comparisons for species extrapolation, making the process more rapid and less 
daunting for scientists and regulators alike to help guide research and inform risk 
assessments. 
 
In the context of the AOP framework (Ankley et al., 2010), results from SeqAPASS may be 
used to predict the extent to which signaling pathways are conserved across species. Just as 
KEs at relatively early points within these pathways may be predictive of adverse outcomes at 
the whole organism level, the extent of genomic/proteomic conservation can influence the 
extent to which the data can be extrapolated to other species/taxa. SeqAPASS output helps 
identify the scope (domain) of susceptible species across various taxa with similar (i.e., well 
conserved) biological processes and pathways. SeqAPASS can be used to define the 
taxonomic domain of applicability for mammalian-based assays, identify unique species 
differences that may drive the development of assays to broaden taxonomic coverage or, 
where more specific assays should be developed, to broaden the taxonomic domain of the 
model and identify relevant susceptible species that might need additional in-life testing. 
(Lalone et al., 2018) found that SeqAPASS results for ToxCast assay targets can be obtained 
and proposed them as an initial line of evidence for extrapolating mammalian-based HT assay 
data across ecologically-relevant species (Lalone et al., 2018).  
 
In summary, the SeqAPASS is an interspecies extrapolation tool that helps predict the extent 
to which data generated to evaluate endocrine bioactivity using mammalian systems (e.g., ER 
pathway assay results and in progress, AR pathway assay results) can be extrapolated to non-
mammalian species (e.g., fish, amphibians, and birds). For example, ToxCast estrogenic 
bioactivity results were extrapolated from mammalian organisms to fish to help identify the 
taxonomic domain of applicability of the HT results/conclusions regarding likely active/inactive 
chemicals (Lalone et al., 2018; Ankley et al., 2016). As proposed in (Ankley et al., 2016), EPA 
would consider a pathway-based multi-step framework (in which the SeqAPASS results are 
part of the first step) to assemble and integrate information to conduct a comparative analysis 
focused on the potential for chemicals to interact with a relevant endocrine target in different 
species. In the 2018 update of the OECD Revised Guidance Document 150 on Standardized 
Test Guidelines for Evaluating Chemicals for Endocrine Disruption (OECD, 2018a), the 
SeqAPASS was noted as a tool which may assess endocrine effects on non-target species. 
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Figure 2. SeqAPASS uses available protein sequence and structural information to 
understand cross species conservation at the molecular level, which is used to predict 
chemical susceptibility. SeqAPASS is publicly accessible online on EPA’s website.  
 
 
EPA will be using the SeqAPASS as an interspecies extrapolation tool (Lalone et al., 2018; 
Ankley et al., 2016) for consideration as use as OSRI (U.S. EPA, 2009e) in WoE (U.S. EPA, 
2011b) evaluations. 
 
 
VII. Thyroid Adverse Outcome Pathway (AOP) Framework 
 
EPA is investigating the biology of the thyroid system and identifying and developing HT 
screening assays useful for interrogating thyroid biology as a prelude to developing an 
integrated model that may produce results that can be considered OSRI. In November 2017, 
EPA requested independent, scientific advice from the FIFRA SAP on EPA’s ongoing 
development of an approach to detect substances that can perturb thyroid function (U.S. EPA, 
2017). The FIFRA SAP supported the development of EPA’s initial framework (U.S. EPA, 
2017, see https://www.regulations.gov/document/EPA-HQ-OPP-2017-0214-0024). 
Subsequent to the November 2017 FIFRA SAP, EPA published a review of the thyroid AOP 
network (Noyes et al., 2019). EPA’s response to the SAP recommendations is provided as part 
of the Response to the FIFRA SAP November 2017 Report EPA (U.S. EPA, 2017, see 
https://www.regulations.gov/document/EPA-HQ-OPP-2017-0214-0024). EPA will consider the 
November 2017 FIFRA SAP recommendations as the Thyroid Pathway Framework is further 
developed and evaluated.  
 
EPA has ongoing research to develop the HT screening assays for thyroid-relevant targets that 
were presented at the November 2017 FIFRA SAP meeting (U.S. EPA, 2017), including those 
involved in thyroid regulation (thyroid hormone receptor, thyroid stimulating hormone receptor, 
and thyrotrophin-releasing hormone receptor); thyroid synthesis (Haselman et al., 2020; Paul-
Friedman et al., 2019; Wang et al., 2019); peripheral thyroid deiodination (Olker et al., 2019) 
and iodide recycling (Olker et al., 2021); serum thyroid transport; and markers of increased 
hepatic catabolism of thyroid, among others (Noyes et al., 2019). Thyroid regulation differs 
across life stages (e.g., alterations in the requirement for iodine in pregnant females). EPA also 
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has ongoing research to develop models to predict thyroid-related apical outcomes based on 
biochemical inputs (Haselman et al., 2020; Hassan et al., 2020). EPA is also collaborating with 
international efforts, particularly those in the European Union, to advance NAMs for thyroid 
outcomes. Additional research and peer review are needed to identify the most important 
molecular initiating events and to ensure that NAMs will exist to provide orthogonal and 
confirmatory results for each of these events and augment the current assays in the tier battery 
that interrogate thyroid hormone systems.  
 
 
VIII. Future Direction  
 
The development of HT assays and computational models by the EDSP has been underway 
since the program was first introduced in 1998 (EDSTAC, 1998). To date, reviewing EDSP 
chemicals for potential bioactivity using lower-throughput in vitro and in vivo assays in the Tier 
1 battery has proven to be complex, costly, and time-consuming. EPA has described several 
NAMs that it can use to aid in the screening and prioritization of chemicals for potential 
endocrine bioactivity and/or exposure.  
 
EPA is continuing to develop NAMs for other Tier 1 tests (see Table 1). These include NAMs 
that can be combined with the AR Pathway model to predict the results of the Hershberger 
assay (Kleinstreuer et al., 2018). The AR pathway model was also compared to results from a 
curated rodent Hershberger database (Browne et al., 2018; Kleinstreuer et al., 2018). Overall 
agreement was 66% (19/29), with ten additional inconclusive chemicals. Most discrepancies 
were explained based on differences in dosimetry. Within the chemical set examined, the AR 
model had 100% positive predictive value for the in vivo Hershberger response, i.e., there 
were no false positives, and chemicals with conclusive AR model results (agonist or 
antagonist) were consistently positive in vivo. These additional NAMs may include 
incorporating metabolic competence in the existing assays or an assay for 5-alpha reductase 
activity. Additionally, HT alternatives for addressing the thyroid AOP network are underway. 
EPA will continue to refine the HT assays, models, and tools to more efficiently assess a 
chemical's potential to interact with the estrogen, androgen, and thyroid systems. 
 
A HT H295R cell-based assay (Karmaus et al., 2016) has been developed that uses high-
performance liquid chromatography followed by tandem mass spectrometry to measure 
multiple components of steroid synthesis. EPA performed a comparison (sensitivity and 
specificity) of the low-throughput and HT H295R assays for detecting the disruption of 
synthesis of estradiol and testosterone and presented this analysis to the FIFRA SAP in 
November 2017 (Haggard et al., 2018; U.S. EPA, 2017). The November 2017 FIFRA SAP 
made a number of recommendations to improve the robustness and performance of the HT-
H295R assay and application of the mean Mahalanobis distance for prioritization of chemicals 
in the EDSP universe for Tier 1 screening (U.S. EPA, 2017). Some of these concerns have 
been addressed, while other issues remain in progress. EPA partially responded to the 2017 
FIFRA SAP comments in Haggard et al. (2019) and as part of the detailed Response to 
Comments document (U.S. EPA, 2022a). 
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EPA is continuing to investigate the use of the HT H295R cell-based assay. Furthermore, EPA 
is continuing research on steroidogenesis. As this is considered a work in progress, EPA is not 
proposing any use of the HT H295R cell-based assay at this time.  
 
Thomas et al. (2019) laid out a blueprint to guide the strategic and operational direction for 
computation toxicology research at EPA. This blueprint outlines a framework for the 
development and application of HT and computational modeling approaches in a tiered 
manner for chemical risk assessment including their application in the EDSP. Furthering the 
development and implementation of NAMs will dramatically enhance EPA’s ability to meet 
testing needs, reduce costs, and eliminate or greatly reduce animal-based testing. EPA will 
continue to investigate NAMs as alternatives to other portions of the EDSP Tier 1 screening 
battery and actively communicate with stakeholders on the development and evaluation of 
EDSP NAMs that may be used for screening and priority setting. 
 
 
IX. Conclusion 
 
A summary of the conclusions of this document is as follows: 

• The full estrogen receptor (ER) and androgen receptor (AR) pathway models have been 
validated, and the results from those models may be used as alternatives at this time for 
some Tier 1 assays (ER binding, estrogen receptor transcriptional activation (ERTA), 
and Uterotrophic [ER pathway model] and AR binding [AR pathway model]). For any 
particular chemical, the suitability of a model will be decided on a case-by-case basis 
considering the limitations of the models (see Section III.E.) and the properties of the 
chemical.  

• All the New Approach Methodologies (NAMs)/ tools discussed in this paper (including 
full ER and AR pathway models, reduced ER and AR pathway models, Integration of 
Bioactivity and Exposure (IBER), Collaborative Estrogen Receptor Activity Prediction 
Project (CERAPP), and Collaborative Modeling Project for Androgen Receptor Activity 
(CoMPARA)) may be used directly to prioritize chemicals for screening or to inform 
prioritization or hazard assessment (Sequence Alignment to Predict Across Species 
Susceptibility (SeqAPASS)). 

• In some cases (considering the limitations of the model, additional available information, 
and EPA’s guidance on Other Scientifically Relevant Information (OSRI)), the following 
NAMs may be considered OSRI and used during Weight of Evidence (WoE) evaluation 
to make decisions: reduced ER and AR pathway models, CERAPP, CoMPARA, 
SeqAPASS, and IBER. 

• During WoE evaluation, which precedes Tier 2 testing, results from the Tier 1 battery, 
appropriate NAM alternatives, and OSRI are considered to determine which, if any, Tier 
2 tests should be conducted. Thus, this WoE occurs between Tier 1 screening and any 
Tier 2 testing. 

• None of these NAMs is meant to be alternatives for the current Tier 2 tests. 
The Agency will consider all public comments received on this document as it begins to 
implement these new approaches. 
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This document summarizes the scientific progress for the use of NAMs in the EDSP since 
2015.  
 
Screening. Given the strengths discussed in Section III.C as well as the uncertainties 
and limitations discussed in Section III.D., EPA has determined that the following NAMs 
may be used as alternatives for the following four (4) EDSP Tier 1 screening assays 
when evaluated on a chemical-by-chemical basis (each assay evaluated independently 
for each chemical). As part of the chemical evaluation process, EPA reviews the quality 
of available data across multiple lines of evidence. For the NAMs methods listed here, 
EPA will specifically consider the quality of the individual ToxCast assay data along 
with the level of confidence in and biological relevance of the predictions.  
 

 
(1) The Estrogen Receptor (ER) pathway model based on the full 18-assay 
ToxCast/Tox21 battery (Browne et al., 2015; Judson et al., 2015) may be used as an 
alternative for three current EDSP Tier 1 screening assays:  
 ER binding in vitro assay (OCSPP 890.1250; (U.S. EPA, 2009b)). 
 ER transcriptional activation in vitro assay (ERTA; OCSPP 890.1300; (U.S. EPA, 

2009c)). 
 In vivo Uterotrophic assay (rat) (OCSPP 890.1600; (U.S. EPA, 2009d)). 

 

(2) The Androgen Receptor (AR) pathway model based on the full 11-assay 
ToxCast/Tox21 battery (Kleinstreuer et al., 2017) may be used as an alternative for one 
current EDSP Tier 1 screening assay: 
 AR binding in vitro assay (OCSPP 890.1150; (U.S. EPA, 2009a)).  

Priority Setting. EPA is also using additional NAMs for priority setting of chemicals for 
EDSP Tier 1 screening or for use as OSRI in WoE evaluations. Priority setting may use 
NAMs singly or together with other available tools to prioritize chemicals for screening. These 
approaches are especially useful for prioritizing thousands of chemicals for which other 
sources of bioactivity and exposure information do not exist. 

Recognizing the potential for uncertainties and limitations, the following NAMs may be used for 
priority setting of large sets of chemicals for EDSP Tier 1 screening or for consideration as use 
as OSRI in WoE evaluations. 

(1) Additional ER and AR pathway models using assay subsets  
(a) ER agonist assay subset pathway models (Judson et al., 2017).  
(b) Revised (14-assay) and AR agonist and antagonist assay subset pathway 
models (Judson et al., 2020).  

EPA continues to investigate the potential suitability of reduced ER and AR pathway 
models as alternatives to the EDSP Tier 1 screening assays.  

 
(2) In Silico Qualitative Structural Activity Relationship Consensus Models for ER and 
AR (Mansouri et al., 2020; Mansouri et al., 2016).  
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(3) IBER, which combines estimates of the external dose potentially related to 
bioactivity results from the ER and AR pathway models with estimates of exposure 
(Friedman et al., 2020; Thomas et al., 2019; Bell and Wilson, 2018; Wambaugh et al., 
2018; Sipes et al., 2017; Wetmore, 2015; U.S. EPA, 2014c; Wetmore et al., 2012; 
Rotroff et al., 2010).  
 
(4) The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool 
is an interspecies extrapolation tool (Lalone et al., 2018; Ankley et al., 2016). The 
SeqAPASS tool provides information that can be used to understand how broadly HT 
screening data (e.g., ER) or AOPs may plausibly be extrapolated across species. For 
example, SeqAPASS could be used to extrapolate mammalian HT ER data to non-
mammalian species and potentially reduce the need to request additional animal 
studies. This tool could be used to help prioritize data needs for EDSP Tier 1 screening. 

 
EPA is in the process of refining a transparent, scientifically sound, and implementable 
approach for using NAMs for the mandatory screening of pesticides under FFDCA 408(p). This 
approach will consider the strengths, limitations, and uncertainties of the NAMs described in 
this White Paper in combination with the existing, validated assays in the EDSP tiered-
framework and other potential OSRI (U.S. EPA, 2009e), (e.g., exposure data, physical-
chemical properties, toxicologically relevant studies in the published literature, QSAR models 
and other data submitted to support chemical assessment), as part of the WoE approach (U.S. 
EPA, 2011b) to determine whether additional data are needed. 
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